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Abstract 

An architectural tactic is a design decision that affects how well a software architecture addresses 
a particular quality attribute. This report describes how tactics are based on the parameters of 
quality attribute models. Tactics provide an architectural means of adjusting those parameters, 
which, in turn, can improve the quality-attribute-specific behavior of the resulting system. 

This report justifies the tactics for modifiability, using established concepts of coupling, cohesion, 
and cost motivations as the means of identifying parameters of interest. Various tactics are then 
described based on their ability to control these parameters. The report also describes a standard 
set of architectural patterns and their variants in terms of the use of these tactics. 
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1 Introduction 

Architects use architectural patterns and tactics to aid them in the design process.  Both are in-
tended to improve software architectural decisions and simplify the design process.  Patterns are 
known solutions to common problems, whereas tactics focus on specific quality attributes.  To 
more effectively apply both tactics and patterns, architects need to understand how architectural 
tactics and patterns relate and how to use them effectively.  In this report, we explore the relation-
ships of tactics to architectural patterns through the lens of one quality attribute—modifiability.  

Modifiability is one of the properties of a software system that has been recognized by software 
engineers as being important for many years. The basic concepts of coupling and cohesion and 
information hiding originated in the 1970s [Stevens 1974, Parnas 1972]. A large number of archi-
tectural patterns are also intended to support the modifiability of a system [Buschmann 1996].  In 
2003, Bass and colleagues introduced the concept of architectural tactics for modifiability to iden-
tify architecture transformations that support the achievement of modifiability [Bass 2003]. In this 
report, we relate coupling and cohesion to tactics, and tactics to patterns. We motivate our collec-
tion of modifiability tactics1 in terms of coupling and cohesion and in terms of cost models. We 
explain the patterns described by Buschmann and colleagues in terms of these tactics [Buschmann 
1996]. We also explain how the variants of these patterns result from the application (or removal) 
of an architectural tactic to an existing pattern.  

Designers using this report will have a choice of techniques to apply to achieve modifiability. 
They could use tactics while understanding why each one improves the modifiability of a design, 
they could use patterns while understanding how they combine a number of tactics, or they could 
use tactics to produce a variant of an existing pattern. 

We begin this report with a motivation for the use of tactics as architecture transformations and 
move into a discussion of prior work on which we build or from which we differ. Then we discuss 
modifiability, describe several classes of analytic models for modifiability, and describe the archi-
tectural tactics for modifiability. Finally in this report, we relate tactics to patterns and the variants 
of these patterns.  In subsequent reports, we will examine achieving the qualities of performance, 
security, and availability. 

In Section 2, we briefly discuss the use of architectural tactics, a group of design decisions that 
influence quality attributes, to transform a software design’s behavior [Bass 2003]. Through iden-
tifying the parameters of a quality attribute model, we can identify architectural tactics that allow 
us to control the model’s behavior. We make several observations about the relationship between 
architectural tactics and parameters. In Section 3, we contextualize our examination of modifiabil-

 
1  The tactics we define in this report differ slightly from the tactics introduced previously by Bass and colleagues. 

The differences result from our increased understanding of the sources of the tactics, the omission of tactics 
from Bass and colleagues that are not architecture transformations, and the revision of the names for clarity 
[Bass 2003]. 
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ity and architectural tactics within three categories: (1) coupling and cohesion, (2) architectural 
patterns, (3) techniques for achieving modifiability. Section 4 defines modifiability, examines 
modification costs, and places modifiability in the context of a design fragment’s life cycle. We 
also discuss modifiability and portability, clarifying how we use portability in the context of this 
examination. We then, in Section 5, elaborate on the relationships among the responsibilities, or 
computations of the responsibilities, in a specific module. Responsibilities can be combined, sepa-
rated, or moved among modules; and the use of modifiability tactics can reduce the strength of 
coupling of two responsibilities, thus reducing the cost of making a modification.  

In Section 6, we enumerate tactics for modifiability. These tactics are defined in terms of the pa-
rameters of the coupling and cohesion models—reducing the cost of modifying a single responsi-
bility, increasing cohesion, and reducing coupling. Each of these parameters is developed and il-
lustrated. We identify the deferred bindings enabled by each tactic. In Section 7, we connect the 
design decisions intended to improve modifiability with the architectural tactics discussed earlier. 
These design decisions are described in terms of the eight software architectural patterns dis-
cussed by Buschmann and colleagues in Pattern-Oriented Software Architecture: A System of 
Patterns [Buschmann 1996].  The section includes an overview of the correspondence between 
patterns and tactics, as well as a table that details the specific correspondences. 

Sections 8 through 15 describe each of the architectural patterns in detail. In these sections, we 
also discuss the tactics implemented by the particular pattern being examined in terms of respon-
sibilities and dependencies. In each of these sections, we define the modifiability implications of 
the pattern, followed by the variants of the pattern. Finally, Section 16 summarizes our conclu-
sions.  
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2 Tactics as Transformations 

In this section, we motivate tactics as the transformations that are available to affect the behavior 
of a design with respect to a particular quality attribute. Figure 1 is a basic queuing-theory model. 
Events arrive, are queued, are served by the server, are sent to another queue, are served by an-
other server, and then exit the system. 

Figure 1: Basic Queuing-Theory Model 

This type of model is used to predict the average response time or throughput for jobs arriving at 
the system. 

This model has a number of parameters including the average arrival rate of requests, queue size, 
queuing discipline, average service time for a request, scheduling algorithm for the server, topol-
ogy of the network, routing of requests through the network, network bandwidth, and size of the 
messages being routed through the network. These parameters represent the means to control the 
behavior of the model. They can be adjusted to control latency or throughput.  

An architectural tactic is an architecture transformation that affects the parameters of an underly-
ing quality attribute model, which, in our example, is the basic queuing-theory model. In our ex-
ample, tactics include transformations to reduce average service time, such as improving an algo-
rithm, pre-allocating dynamic resources such as threads or database connections, or reducing 
interprocess communication costs by collocating computations within a single process. They also 
include transformations to affect the routing of messages or the scheduling of the processor. 

Three observations that can be made about architectural tactics are 

1. The identification of tactics depends on identifying the parameters of the model. We do not 
need specific values for the parameters or the resulting values for latency and throughput in 
order to identify tactics. The model must be analyzed sufficiently to determine the direction 
of the response’s change based on the direction of the parameter’s change. For example, re-

arrivals 
 

server 

results 

scheduling  
algorithm 

queue 

routing of 
messages 
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ducing average service times will result in a reduction of latency and an increase in through-
put. To make this assertion about the direction of the change, there is no need to predict the 
amount of the change. 

2. The model does not need to be a detailed description of a system. Adding more detail to the 
model adds additional parameters so that our list of parameters above is not complete. Given 
a model, we can identify all of its parameters. Making the model more detailed adds more 
parameters. For example, one might criticize Figure 1 on the grounds that it does not reflect 
classes of jobs or queues for the network. These criticisms are based on the argument that the 
model does not capture sufficient detail for realistic predictions. However, we are not using 
the model for predictions but rather only for the identification of parameters. Adding details 
as to classes of jobs or queues for the network will add parameters and enable us to identify 
additional tactics, but it does not contradict the identification of the parameters. 

3. We do not claim that the tactics in this report are complete, only that they represent trans-
formations for changing parameters. The parameters of the model represent the opportunities 
for changing parameters, but the enumerated tactics are not necessarily all of the transforma-
tions for changing them. For example, there are several performance tactics for reducing the 
average service time, but additional transformations for reducing that time are possible too. 
Our expectation is that our lists of tactics include the most common techniques. 

The argument that we make for modifiability is similar. We define several quality attribute mod-
els for modifiability and identify the parameters for them. Once the parameters are identified, we 
describe some architectural tactics that will affect those parameters and motivate them in terms of 
the relation between the parameters they affect and the predictions of the model. 
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3 Context 

Three categories of work provide the context for this report: (1) coupling and cohesion, (2) pat-
terns, and (3) techniques for achieving modifiability. 

3.1 COUPLING AND COHESION 

Stevens, Myers, and Constantine introduced the concepts of coupling and cohesion in 1974 [Ste-
vens 1974]. “Coupling is the measure of the strength of association established by a connection 
from one module to another,” and “coupling is reduced when the relationships among elements 
not in the same module are minimized” [Stevens 1974, p. 117 and 121]. Cohesion is a measure of 
the relationship among the responsibilities of a specific module. We will not attempt to summa-
rize the work based on coupling and cohesion that’s been done since then, except to note that 
these concepts have been very influential. Our enumeration of tactics is justified based on cou-
pling and cohesion.  

3.2 PATTERNS 

Architectural patterns have also been very influential since their introduction by Buschmann and 
colleagues in 1996 [Buschmann 1996]. The collection of architectural patterns given by those au-
thors is the most widely cited. They define an architectural pattern as “expressing a fundamental 
structural organization schema for software systems. It provides a set of predefined subsystems, 
specifies their responsibilities, and includes rules and guidelines for organizing the relationships 
between them” [Buschmann 1996, p. 12]. We will demonstrate how those patterns and their vari-
ants can be expressed in terms of architectural tactics.  

3.3 TECHNIQUES FOR ACHIEVING MODIFIABILITY 

Kazman and Bass introduced several “unit operations” as a first attempt to define the primitives 
used to achieve various qualities [Kazman 1994]. Separation is a sample unit operation. The set of 
unit operations was never grounded in theory but rather was derived from expert practice. Subse-
quently, architectural tactics were introduced for a variety of different quality attributes [Bass 
2003, Ch. 5]. The modifiability tactics were also derived from expert practice and never grounded 
in a theoretical framework for modifiability. In this report, we provide that theoretical grounding 
for the quality of modifiability. 

Other researchers such as Baldwin and Clark [Baldwin 2002] and Chung, Nixon, and Yu [Chung 
1999] introduced primitive operations for modifiability, but these operations were never grounded 
in a theoretical framework for modifiability either. 

 SOFTWARE ENGINEERING INSTITUTE | 5 



 

6 | CMU/SEI-2007-TR-002 



 

4 What Do We Mean by Modifiability? 

Modifiability is a quality attribute of the software architecture that relates to “the cost of change 
and refers to the ease with which a software system can accommodate changes” [Northrop 2004, 
p. 28]. It brings up four concerns: 1) Who makes the change? 2) When is the change made? 3) 
What can change?  and 4) How is the cost of change measured? 

In this report, we focus on modifiability as follows: 

• Who makes the change?  We refer to modifiability as changes made by the architect and de-
veloper, though in other situations modifications may be made by others involved in the soft-
ware system.  

• When is the change made? Figure 2 shows several times in a design fragment’s life that are 
important for our discussion. A portion of the system is designed and, at some later time, 
modified. The modified portion of the system is then deployed and executed. In other situa-
tions, modifications may be made after deployment, but that is not represented. Note that this 
representation is independent of the development process. In a waterfall process, the times 
refer to the whole system, and in an iterative process, the times refer to the portion of the 
system being added or modified in the current iteration.  

 

Design time Deployment time Execution time Modification 

Figure 2: Different Times in the Life of a Design Fragment That Are Important in This Report 

• What can change? Determining which elements should be modifiable is an important part of 
the specification process and is often overlooked. We are examining how the modifiability 
potential of elements may influence overall costs. Determining specific design elements’ 
needs for modifiability early in the architecture process reduces costs and saves time overall, 
particularly if the modifiability needs to be flexible. We are concerned in this report about 
the decisions made about a design fragment at design time. These decisions will affect the 
difficulty of making a particular modification to that fragment. 

• How is the cost of change measured? Once a change has been specified, the new implemen-
tation must be designed, implemented, tested, and deployed. All of these actions have an as-
sociated cost that can be measured. Our measure of a modification is the cost to make a spe-
cific modification given a particular design fragment. Any tactic based on coupling and 
cohesion will be used during design time to lower the cost of a subsequent change at modifi-
cation time. Other factors that we might consider include the cost of implementing a tactic, 
the opportunity cost of not being able to use the money spent on implementing the tactic for 
other purposes during the period between design time and modification time, the probability 

 SOFTWARE ENGINEERING INSTITUTE | 7 



that a particular modification will actually be made, and the number of times that a modifica-
tion of a particular type is made. The decision to apply a particular tactic is a complicated 
function of these and other factors. See the work of Ozkaya, Kazman, and Klein for a discus-
sion of one method of treating these factors [Ozkaya 2007]. For this report, we ignore these 
additional factors and are interested only in the cost of making a particular modification once 
a tactic has been implemented.  

As an example, an architect may choose to apply the encapsulation tactic to a module during de-
sign time in anticipation of modifications needed inside the module at a later time. The cost of 
implementing that tactic for a module includes defining the interface and restricting outside access 
to the module to use only that interface. There is also the cost of making a modification inside the 
module once it has been encapsulated. This cost, presumably, will be lower than it would have 
been had we not created the interface. This second cost—the cost of making the modification 
given that a tactic has been applied—is the only cost we focus on in this report. 

ISO/IEC 9126-1, Software Engineering – Product Quality – Part I: Quality Model, has two cate-
gories having to do with change: maintainability and portability [ISO 2001]. It defines maintain-
ability as the capability of the software product to be modified and portability as the capability of 
the software product to be transferred from one environment to another.  

In our usage, portability  
• would be a form of modifiability if transferring a product to another environment requires a 

change to the product 

• would not be a form of modifiability if the capability to execute in the different environment 
already existed within the product  

Maintainability is a subset of what we are calling modifiability. 

Modifiability, as a concept, is not sufficiently specific to aid designers. They must know what 
specific modifications are expected in order to apply the appropriate tactics that will allow for 
those modifications. In our discussion of each tactic, we identify the modification for which the 
tactic is useful. 
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5 Parameters to Control Modifiability Based on Coupling 
and Cohesion 

A modifiability tactic is an architecture transformation that improves the modifiability of that ar-
chitecture. We are applying the approach we sketched for performance to modifiability. That is, 
we begin with an abstract model of the modifiability problem based on coupling and cohesion and 
then identify the parameters of this abstract model. The model we begin with requires us to spec-
ify somewhat more precisely what is meant by coupling and cohesion and to use this understand-
ing to identify the appropriate parameters.  

First, we discuss coupling and cohesion and their implications. Their original definitions are in 
terms of modules, but our argument involves changing the functions computed within a module 
and uses the concept of responsibilities to describe the computations of a module. In particular, 
we are interested in the relations among the responsibilities. We introduce the concept of the 
“strength” of the coupling of two responsibilities to enable us to argue that modifiability tactics 
will reduce the strength of a coupling and, hence, reduce the cost of making a modification. 

5.1 RESPONSIBILITIES 

We define coupling and cohesion in terms of responsibility, which is a concept in a software con-
text that comes from object-oriented design [Wirfs-Brock 2003]. A responsibility is an action, 
knowledge to be maintained, or a decision to be carried out by a software system or an element of 
that system. One characterization of a computer system is in terms of the responsibilities of the 
system, their assignment to modules, and the relationships among the responsibilities [Clements 
2003].  

We assume that each responsibility has a modification cost associated with it—that of modifying 
that single responsibility. This is clearly a simplification, since some modifications to a particular 
responsibility could cost more than others. The variance in costs based on the type of modification 
could be modeled by introducing probabilistic functions. Our argument does not depend on the 
particular values assigned but rather on the idea that making certain transformations will not in-
crease the overall cost and will reduce the cost of certain modifications.  

The potential to reorganize responsibilities is an important aspect of our discussion. They could be 
decomposed; for example, the responsibility to “manage bank accounts” might decompose into 
“authenticate user,” “view accounts,” and “transfer funds.” The responsibilities could be merged; 
as an example, simply reverse the prior example. They could also be moved from one module to 
another. Any reorganization could be viewed as a decomposition into more fine-grained responsi-
bilities followed by mergers to yield the new set of responsibilities. Some of our tactics decom-
pose responsibilities, some merge responsibilities, and others move responsibilities among mod-
ules. 
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We use one relation between two responsibilities—the “strength” of the coupling. This relation is 
not defined formally by Steven, Myers, and Constantine but is implicit in their discussion of cou-
pling [Stevens 1974]. We define the strength of the coupling of two responsibilities as the prob-
ability that a modification to one responsibility will propagate to the other. Intuitively, two re-
sponsibilities have a high strength of coupling if one of them has an intimate knowledge of the 
other. This knowledge suggests that changes to one responsibility in one of the modules might 
have to be reflected in the other. Using our bank example, a modification to “authenticate user” 
might propagate to “transfer funds.” We use strength of coupling to provide a likelihood that this 
propagation will occur. This is a special case of the UML concept of dependence; although in 
UML, a dependence either exists or does not exist [OMG 2005]. There is no concept of the 
strength of a dependence in UML. 

The average cost of modifying a responsibility is the average cost of directly modifying that re-
sponsibility plus the average cost of modifying all responsibilities that have additional modifica-
tions propagated to them. The assumption behind the definition of high coupling is that modifica-
tions will propagate to those responsibilities that are strongly coupled to the responsibility being 
modified.  

Coupling is an asymmetric relation: the strength of coupling between responsibility A and respon-
sibility B is not necessarily the same as the strength of the coupling between responsibility B and 
responsibility A. 

We can now identify two of the parameters that we will use to motivate modifiability tactics. Note 
that these parameters are independent of any particular cost prediction model: 

• average cost of modifying a single responsibility: Reducing the average cost of modifying a 
single responsibility A and making no other changes will decrease the average cost of any 
modification that affects A. Tactics that split responsibilities will reduce the average cost of 
making a modification to the responsibility that is being split. 

• coupling: Reducing the strength of the coupling between two responsibilities A and B and 
making no other changes will decrease the cost of any modification that affects A. Tactics 
that reduce coupling are those that place barriers of various sorts between responsibilities A 
and B. 

5.2 MODULES 

We have defined coupling (although not yet cohesion) in terms of responsibilities. Next, we dis-
cuss what happens when modules are introduced. In the Module view type [Clements 2003], re-
sponsibilities are assigned to modules. Modules can be decomposed and form a hierarchy. When 
we refer to responsibilities A and B as being in the same module, we are referring to the module 
deepest in the hierarchy that contains both responsibilities.  

“Coupling is reduced when the relationships among elements not in the same module are mini-
mized. There are two ways of achieving this—minimizing the relationships among modules and 
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maximizing relationships among elements in the same module” [Stevens 1974, p. 121]. Maximiz-
ing the relationships among elements in the same module is the definition of cohesion.  

We turn cohesion into our third parameter: 

• cohesion: If responsibility A has a high strength of coupling with responsibility B, the cost of 
changing responsibility A is less if A and B are collocated in the same module than it would 
be if they were located in different modules. 

In our use of the parameters, we are not explicit about the “high strength of coupling.” We assume 
that the strength of coupling is known to designers through their understanding of the solution‘s 
specifics. 

5.3 COST-BASED IDENTIFICATION OF PARAMETERS 

An additional parameter is based on when in the life of a system a particular modification occurs. 
Coupling and cohesion are easily translated into architectural terms, since they deal with struc-
tural concepts. The tactics that we deal with in this section, called “deferred binding tactics,” are 
motivated by cost considerations. Most cost models are not based on structural concepts but rather 
on some measurement of the amount of functionality and the skill of the developers. The conse-
quence, for us, is that our tactics are based on one fundamental assumption: as long as there is 
suitable preparation, the later in the life of a system a modification occurs, the less the modifica-
tion will cost. The keys are the “suitable preparation” and the fact that we are not considering the 
cost of preparing for the modification (similar to the coupling and cohesion arguments). The 
“suitable preparation” is what distinguishes a planned change from an unplanned repair.   

Figure 2 shows several different times during the life of a design fragment. The suitable prepara-
tion occurs during design time and enables a deferred binding tactic to be applied during modifi-
cation time, deployment time, start of execution time, or the execution of the system. Further-
more, we shall argue that the suitable preparation is based on the application of a coupling and 
cohesion tactic. That is, preparation for a deferred decision is based on a tactic derived from cou-
pling and cohesion considerations. Deferring a particular decision is based on cost considerations. 

Every activity whose time is indicated in Figure 2 has a cost. If an activity occurs later in Figure 2 
than the time of the modification, there is a cost associated with it. If it occurs earlier, the cost is 
not considered. If a modification is made at execution time—for example through the use of a 
name server—the modification, per se, does not need to be tested or deployed; consequently, the 
cost of testing and deploying is zero for that modification.  

The fourth parameter we identify as a result of cost considerations is:   

• life cycle time of modification: A suitably prepared modification made late in the life cycle 
will cost less than the same modification made earlier, because the preparedness of the sys-
tem means that some of the life cycle costs will be zero for late life cycle modifications. 
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6 Modifiability Tactics 

We are now ready to enumerate tactics for modifiability. The key points for consideration are 

• A modifiability tactic is an architectural design decision that affects parameters based on 
coupling and cohesion or on the ability to omit particular life-cycle steps for a design frag-
ment. 

• We wish to control three parameters based on cohesion and coupling through architectural 
means. We will use those parameters as the means of organizing the tactics. 

• One parameter is based on the cost of omitting steps in the life cycle of a design fragment. 
The tactics that follow from this parameter are made possible through the application of one 
or more tactics based on coupling and cohesion. 

• We must be specific about the expected modifications whose cost will be reduced by the use 
of tactics. 

The tactics we will define are organized based on the parameters of the coupling and cohesion 
models:  

• reducing the cost of modifying a single responsibility  

− Split a Responsibility. 
• increasing cohesion 

− Maintain Semantic Coherence. 
− Abstract Common Services. 

• reducing coupling 

− Use Encapsulation. 
− Use a Wrapper. 
− Raise the Abstraction Level. 
− Use an Intermediary. 
− Restrict Communication Paths. 

Furthermore, we will argue that the coupling- and cohesion-based tactics enable the deferred 
binding tactics. The deferred bindings that we consider are organized based on the system’s life 
cycle or runtime:  

• coding time 

− Use Aspect-Oriented Programming. 
− Use Polymorphism. 
− Parameterize Modules. 

• build time  

− Use Component Replacement. 

 SOFTWARE ENGINEERING INSTITUTE | 13 



• deployment time 

− Use Configuration-Time Binding. 
• initialization time 

− Use Resource Files. 
• runtime 

− Use Runtime Registration. 
− Interpret Parameters. 
− Use Start-Up Time Binding. 
− Use Runtime Binding. 
− Use Name Servers. 
− Use Plug-Ins. 
− Use Publisher-Subscriber. 

6.1 REDUCING THE COST OF MODIFYING A SINGLE RESPONSIBILITY  

The basic approach to reducing the cost of modifying responsibilities is to transform the architec-
ture by splitting the responsibility into two portions based on the specific change to be made. If 
the split involves more than one responsibility, the tactic is applied as many times as necessary. 

6.1.1 Split a Responsibility 

We are assuming that a modification has been specified in enough detail for particular responsi-
bilities to be identified as the target of the modification. 

If the responsibility being modified includes a great deal of capability, the modification costs 
might be high. Refining the responsibility into several smaller responsibilities and placing them in 
distinct modules reduces the cost of particular changes. The aggregate of the responsibilities is the 
initial responsibility, but for changes that only affect a portion of the initial responsibility, split-
ting the responsibility reduces the cost. 

Splitting a responsibility transforms the architecture in the following fashion: 

• The responsibility that was split is replaced by its two children. 

• The responsibility being split is deleted from its module. Each of the new children is as-
signed to a new module. The old module is deleted if it no longer contains any other respon-
sibilities and is retained if responsibilities are still assigned to it. 

• Any responsibility that is coupled to the responsibility being split is now coupled to the new 
responsibilities with a strength no greater than the original strength (i.e., the strength of ex-
ternal coupling is not increased). The coupling of the new responsibilities must be specified. 
This tactic does not prejudge the strength of coupling the new responsibilities.  
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Figure 3 shows Responsibility A before and after it is split. For simplicity in the graphics, we 
show the coupling as symmetric; however, recall that the coupling could have different strengths 
depending on its direction. 

SA’’xSA’x SAx 

A 

 
Figure 3: Responsibility A is Divided into Two Portions A’ and A’’ 2  

One common criterion for splitting a responsibility is that the children of the responsibility can be 
modified independently. Splitting a responsibility using this criterion reduces the cost of a modifi-
cation, since only a portion of the initial responsibility has to be modified in response to a modifi-
cation request. 

Deferred bindings enabled by this tactic: Consider the following situation in which a modifica-
tion specification affects a particular responsibility, and the designer decides to allow the modifi-
cation at runtime. The responsibility to be modified is then typically split into two responsibilities: 
one performs the activity being split and the other manages the runtime activities to support a re-
quest for the modification. Many deferred binding tactics that are bound prior to deployment time 
assume that the correct responsibilities have been split from the overall responsibilities. More 
specifically, the following list identifies the types of responsibilities that have been separated from 
the overall responsibilities to enable the particular deferred binding. Those tactics that reflect in-
creased generality, such as parameterizing modules or using configuration time bindings, assume 
that additional responsibilities are added to the initial set of responsibilities and will be considered 
later. 

The bindings enabled by this tactic include  

• Use Aspect-Oriented Programming. Aspect-Oriented Programming depends on identifying 
aspects that are woven into the remainder of the code. These aspects must be split from the 
remaining responsibilities.  

 
2  Each portion is assigned to a new module and has its own strength of coupling to other responsibilties. 
 

A’’A’ Key: 
 

 
Strength of 
coupling 

Module SA’’A’

Before After
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• Use Polymorphism. Polymorphism depends on identifying the responsibilities that are com-
mon to a set of services and splitting them from the total set of responsibilities for a system. 

• Use Component Replacement. Replacing components at bind time depends on the common 
set of responsibilities being split from the responsibilities of each component. The compo-
nent responsibilities are those that are specific for the particular system being built. 

6.2 INCREASING COHESION 

Several tactics involve moving responsibilities from one module to another. As we discussed 
when we described cohesion, the purpose of moving a responsibility from one module to another 
is to reduce the likelihood of side effects to other responsibilities in the original module.  

We are assuming that a modification is specified in enough detail to allow the identification of 
responsibilities A and B as the responsibilities that will be affected by the modification.  

In general, the actions of tactics that move responsibilities follow Figure 4. The various tactics 
that we will discuss operate on responsibilities A and B in the figure. A is split into A’ and A’’, 
and B is split into B’ and B’’.  A’ and B’ are then collocated in a single module.  Specifically, the 
tactics make the following transformations to the architecture: 

• First, they split responsibilities A and B into the portions to be moved (A’ and B’) and the 
portions to remain (A’’ and B’’).  

• Then they create a new module and assign A’ and B’ to it.  

Key: 
 

 
Strength of 
coupling 

Module 

SB’’x 

A’’ 

SA’B’x 

SB’’,A’B’ 

B’’ 

A’, B’ 

SA’’x 

B A 

sAx SBx 

SA’’,A’B’ 

After Before 

Figure 4: Application of a Tactic to Increase Cohesion3  
 

3  Responsibility A is split into A’ and A’’, responsibility B is split into B’ and B”, and A’ and B’ are placed into a new 
module. The interface for the module containing A’ and B’ is not shown. 
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The strength of coupling must be assigned to the new responsibilities from other responsibilities. 
Figure 4 shows responsibilities A and B before and after these tactics are applied.  

The particular basis for determining the split depends on the tactic chosen. Next, we discuss the 
possible tactics.  

6.2.1 Maintain Semantic Coherence 

A’ and B’ represent those portions of responsibilities A and B that are simultaneously affected by 
expected modifications. Those modifications may result from historical knowledge, from specific 
knowledge of future modifications, or from a logical coherence of the responsibilities. By splitting 
the responsibilities into two portions—one portion affected by the modification and one not af-
fected by it—the architect enables the collocation of the affected portions, A’ and B’. Collocating 
those portions of various responsibilities that are affected by a single modification will reduce the 
total cost of a modification if 

• The cost of modifying A’ (B’) is less than the cost of modifying A (B).  

• A’’ and B’’ are unaffected by the modification. 

6.2.2 Abstract Common Services 

In this case, A’ and B’ represent similar services. A’ provides a variant of this service to A’’ to 
support the achievement of responsibility A. B’ provides a variant of the service to B’’. Since A’ 
and B’ provide essentially the same service, they could be implemented only once in a slightly 
more general form. Any modification to that service would then only need to occur once, reducing 
the cost of modifiability if the modification under consideration affects the common service. 

Refactoring is an example of this tactic. One refactoring rule involves examining existing respon-
sibilities and factoring out the similar elements. That is exactly what is done by the Abstract Com-
mon Services tactic.   

The deferred bindings enabled by these tactics are   

• Use Aspect-Oriented Programming. A common service is assigned to the module that con-
tains the “advice,” and this advice is then woven into the remainder of the system. This 
weaving occurs at compile or build time, although some research is underway to defer the 
weaving to runtime [Baker 2002]. 

• Use Polymorphism. Polymorphism is an instance of refactoring, which, as mentioned, is an 
application of the Abstract Common Services tactic. 

• Use Component Replacement. The replacement components typically use services that are 
common across all components. Component replacement is an application of the Abstract 
Common Services tactic. 

• Use Configuration-Time Binding. In order to specify bindings at configuration time, the ser-
vices to be bound must have been abstracted, and mechanisms must exist to bind the con-
figuration time specifications to the actions they control.  
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• Use Start-Up Time Binding. In order to specify bindings at start-up time, the services to be 
bound must have been abstracted, and mechanisms must exist to bind the start-up time speci-
fications to the actions they control. 

• Use Runtime Binding. In order to specify bindings at runtime, the services to be bound must 
have been abstracted, and mechanisms must exist to bind the runtime specifications to the 
actions they control. 

6.3 REDUCING COUPLING 

We now discuss four tactics intended to reduce coupling. Some of the tactics reduce the coupling 
from one responsibility to another, and others reduce the coupling from one module to another. 

We are assuming that a modification has been specified in enough detail for particular responsi-
bilities to be identified as being affected by the modification. 

6.3.1 Use Encapsulation 

Encapsulation is used as a portion of virtually all the other tactics, but it also has an independent 
existence. In this report, we do not explore the concept of the interdependence of various tactics, 
but others have been investigating these relationships [Kumar 2007].4 The purpose of encapsula-
tion is to reduce the probability that a change to one module propagates to other modules by in-
troducing an explicit interface. Figure 5 shows module A being accessed by modules B, C, D, and 
E. Encapsulating module A places an interface in front of A and reduces the strength of coupling 
between A and B, C, D, and E. Encapsulation acts by enforcing information hiding behind an in-
terface. With such an interface, SAx is reduced, decreasing the probability that the modification to 
A will propagate to B, C, D, or E. Encapsulating responsibility A transforms the architecture in 
the following fashion: 

• An explicit interface is added to a module. The interface has its own responsibility. It in-
cludes an application programming interface (API) and its associated responsibilities, such 
as “perform a syntactic transformation on an input parameter to an internal representation.” 

• The strengths of coupling that previously went to responsibility A now go to the interface for 
A. They are reduced from their previous values, because the interface acts to limit the ways 
in which external responsibilities can interact with A. The external responsibilities can now 
only directly interact with A through the exposed interface. Indirect interactions, such as de-
pendence on quality of service, will likely remain unchanged; however, limiting direct inter-
actions reduces the coupling between external responsibilities and the internals of A. 

• There is strong coupling between A and the interface of A and low coupling between the 
interface of A and A. This is one case where we make the asymmetry of coupling explicit.  

 

 
4  Kumar, K. & Prabhakar, T.V. Towards Formalizing Architecture Tactic Knowledge, submitted for publication. 
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B C D E 

Figure 5: Modules Accessing Module A Prior to Encapsulating A 

Figure 6 shows the situation after A has been encapsulated. 

 

Figure 6: Encapsulating A Introduces an Interface.5 

 
5  The couplings from outside to the interface are unchanged, but the couplings to A are reduced. There is also 

strong coupling between A and the interface of A and low coupling in the other direction. 
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Deferred bindings enabled by this tactic: It is common practice for the deferred bindings to 
have an explicit interface that encapsulates some responsibilities. It is possible to conceive of 
some runtime bindings being done without an explicit interface, but that is unlikely since encapsu-
lation behind an interface is so pervasive in normal development processes. 

6.3.2 Use a Wrapper 

A wrapper is a form of encapsulation. It is an interface for a module that transforms the data or 
control information for the module. The distinction between a wrapper and encapsulation is fairly 
subtle. Encapsulation is intended to hide information, and transformations may be used as a por-
tion of the hiding strategy. A wrapper is intended to transform invocations, and encapsulation is a 
portion of the transformation strategy. The point at which an encapsulation becomes a wrapper is 
vague. Application of the Use a Wrapper tactic is intended to keep outside modifications from 
propagating into the module. The cost of changing the wrapper is assumed to be less than the cost 
of changing A. If it’s not, the addition of a wrapper makes no sense. Specifically, the Use a Wrap-
per tactic makes the following transformations: 

• An explicit interface is added to the module with its own responsibility named “wrapper for 
module A.”  

• Couplings that previously went to responsibility A now go to the wrapper for A.  

• The wrapper responsibility has a high strength of coupling in relation to A. 

• A has a low strength of coupling in relation to the wrapper responsibility. 

These transformations reduce the total cost of a change to a responsibility external to A by reduc-
ing the costs associated with propagation. Changes to the external responsibility may propagate to 
the wrapper responsibility of A, but the wrapper will keep most changes from propagating to A 
itself. Since the cost of modifying the wrapper responsibility is less than the cost of modifying A, 
the overall cost of making a modification external to A is reduced. 

Figure 5 and Figure 6 (encapsulation) are appropriate for this tactic as well.  

6.3.3 Raise the Abstraction Level 

Raising the level of abstraction for a responsibility involves parameterizing its activities. The pa-
rameters can be as simple as values for variables or as complex as statements in a specialized lan-
guage that are subsequently interpreted. In the interface, the responsibility typically converts the 
parameters into an internal form for execution by the original responsibility. Raising the level of 
abstraction transforms the architecture in the same fashion as the Split a Responsibility tactic. In-
terpret Figure 3 in the following fashion: A’ has the responsibility “interpret parameters,” and A” 
has the responsibility “implement A.” 

Raising the abstraction level of A will reduce the total cost of changing an external responsibility 
B by making changes to B less likely to propagate to A. Changes to B can be reflected in different 
parameters being passed to A that A is already equipped to handle. 
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Deferred bindings enabled by this tactic: Those deferred bindings that allow a variety of pa-
rameters or alternative inputs are enabled by this tactic: 

• Parameterize Modules. A module must be general enough to handle a variety of parameter 
values. The binding of the value to an algorithm is deferred from initial coding time to mod-
ule use time. 

• Use Configuration-Time Binding. The configuration time bindings are typically parameters 
to a module. Consequently, the module must be general enough to handle a variety of con-
figuration time settings. 

• Use Resource Files. The resource file bindings are typically parameters to a module. Conse-
quently, the module must be general enough to handle a variety of resource time settings. 

• Use Runtime Registration. The registration service has parameters to control its behavior, 
allowing it to deal with a variety of different registrants. 

• Interpret Parameters. In order to interpret the parameters, the module must be general enough 
to have parameters. 

• Use Start-Up Time Binding. The start-up time bindings are typically parameters to a module. 
Consequently, the module must be general enough to handle a variety of start-up time set-
tings. 

• Use Runtime Binding. The runtime bindings are typically parameters to a module. Conse-
quently, the module must be general enough to handle a variety of runtime settings. 

• Use Name Servers. The name server has parameters to control its behavior, allowing it to 
deal with a variety of different registrants. 

• Use Plug-Ins. The service that determines the correct plug-in to invoke is parameterized by 
the type of the plug-in.  

• Use Publisher-Subscriber. The Publisher-Subscriber intermediary differentiates among the 
various publishers and subscribers by type information. The type information is a parameter 
that affects the Publisher-Subscriber behavior.  

Note that many of these deferred-binding time tactics are enabled by other tactics and thus could 
be considered to be a pattern, as discussed in the next section. 

6.3.4 Use an Intermediary and Restrict Communication Paths 

An intermediary breaks a dependency. Given a dependency between responsibility A and respon-
sibility B, it can be broken by the insertion of an intermediary. The type of intermediary depends 
on the type of dependency. For example, if A is a data producer and B is a data consumer, a Pub-
lisher-Subscriber intermediary will remove A’s knowledge that B is a consumer. Other data pro-
ducers and consumers may be able to use the same intermediary to break their dependencies, but 
that does not affect our discussion. A special case of using an intermediary is to remove a depend-
ency caused by communication needs and then funnel this communication through an intermedi-
ary. This is the Restrict Communication Paths tactic. The Use an Intermediary tactic makes the 
following transformations to modules A and B: 
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• Create a new responsibility to act as the intermediary, and create a new module for it.  

• Delete the strength of coupling between A and B. Replace it with a strength of coupling be-
tween A and the intermediate module and a strength of coupling between the intermediate 
module and B.  

Figure 7 shows modules A and B before and after the Use an Intermediary tactic is applied. 

Deferred bindings enabled by this tactic: This tactic allows several different forms of deferred 
binding, which all involve breaking different forms of dependencies: 

• Use Name Servers. The location of a service can be determined by using an intermediary for 
registering the service and allowing this location to be discovered.  

• Use Plug-Ins. The interpretation of a bit stream can be bound at runtime by having an inter-
mediary that determines the type of the bit stream and binds it to a component that can inter-
pret the bit stream.  

• Use Publisher-Subscriber. Producers can be coupled to consumers at link time or at runtime 
through different versions of Publisher-Subscriber intermediaries. 

Before After
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Figure 7: Modules A and B Before and After Applying an Intermediary Tactic 
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7 Understanding Architectural Patterns in Terms of Tactics 
and Models 

In this section, we draw the connection between potential design decisions intended to improve 
modifiability (as exemplified by eight software architectural patterns identified in Pattern-
Oriented Software Architecture: A System of Patterns [Buschmann 1996]) and the architectural 
tactics we described previously. Table 1 shows the correspondence between these patterns and the 
tactics they implement. 

Table 1: Architectural Patterns and Corresponding Tactics 
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Layers X X  X   X X  X     

Pipe-and-Filter X  X  X X   X  

Blackboard X X   X X X X  X 

Broker X X X  X X X X   

Model-View- 
Controller 

X  X   X    X 

Presentation-  
Abstraction- 
Control 

X  X   X X    

Microkernel X X X  X X     

Reflection X  X        

Each pattern is described in more detail in the sections that follow.  First, the description, prob-
lem, and solution of each pattern are described, using text excerpted from the pattern definitions 
provided by Buschmann and colleagues [Buschmann 1996].  Second, the tactics implemented by 
the pattern are discussed in terms of responsibilities and dependencies.  Third, the modifiability 
implications of the pattern are discussed in terms of the coupling, cohesion, and deferred binding. 
Finally, the variants of the pattern are discussed in terms of the same models. 

Architects think about their software in terms of its structure both as a set of implementation units 
and as a set of elements that have runtime behavior and interactions [Clements 2003].  Patterns 
may be represented in terms of one of these structures or as a hybrid of both of them.  The modifi-
ability claims of these architectural patterns rely on a set of assumptions about how the runtime 
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elements relate to the implementation units (e.g., components are “an encapsulated part of a soft-
ware system … [and] may be represented as modules, classes, objects or a set of related func-
tions” [Buschmann 1996, p. 434]).  In order to reason about the cost of change with respect to the 
patterns expressed as runtime elements, the corresponding implementation units need to be identi-
fied and analyzed. 
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8 Layers Pattern 

The Layers architectural pattern helps to structure applications that can be decomposed into 
groups of subtasks in which each group of subtasks is at a particular level of abstraction.6   

8.1 PROBLEM 

The system specification provided to you describes the high-level tasks to some extent, and speci-
fies the target platform.  Portability to other platforms is desired.  The mapping of high-level tasks 
onto the platform is not straightforward, mostly because they are too complex to be implemented 
directly using services provided by the platform. 

The following forces influence the solution: 

• Late source code changes should not ripple through the system…   

• Interfaces should be stable, and may even be prescribed by a standards body. 

• Parts of the system should be exchangeable…   

• It may be necessary to build other systems at a later date with the same low-level issues… 

• Similar responsibilities should be grouped… 

• There is no ‘standard’ component granularity. 

• Complex components need further decomposition. 

• Crossing component boundaries may impede performance… 

• The system will be built by a team of programmers, and work has to be subdivided along 
clear boundaries… 

8.2 SOLUTION 

The pattern consists of a number of layers.  Layers are partially ordered with respect to the uses 
relationship.  A layer may only use lower level layers in the partial order. 

 
6  The italicized portions of Sections 8-15 are taken from the work of Buschmann and colleagues [Buschmann 

1996]. These portions are used verbatim from the original publication and have not been edited. 
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Figure 8: Layers Pattern Structure 

The lowest level abstraction is called Layer 1.  Services of Layer J are only used by Layer J+1–
there are no further direct dependencies between layers. 

8.3 THE PATTERN UNDERSTOOD IN TERMS OF TACTICS 

We explain the relation of the Layers pattern to modifiability by explaining how the pattern im-
plements various tactics. Each tactic has been explained in terms of its impact on responsibilities, 
coupling, cohesion, and cost of change. Thus, explaining the Layers pattern in terms of tactics 
provides a means of relating it to the underlying model. 

The Layers pattern can be understood in terms of the following tactics: 

• Maintain Semantic Coherence.    The goal of ensuring that a layer’s responsibilities all 
work together without excessive reliance on other layers is achieved by choosing responsi-
bilities that have some sort of semantic coherence. Doing so binds responsibilities that are 
likely to be affected by a change.  For example, responsibilities that deal with hardware 
should be allocated to the hardware layer and not to the application layer. A hardware re-
sponsibility typically does not have semantic coherence with the application responsibilities. 

• Raise the Abstraction Level.  Layers represent an abstract ladder of services.  Modules in 
lower layers may have an abstract (or more general) representation in the upper layers.  For 
example, there may be concrete device drivers in the lower layer and a more general notion 
of device driver in an upper layer.  Modules in the lower layers are generalized in higher lay-
ers to form the abstraction ladder.  In our presentation of raising the abstraction level, we 
identified a responsibility in the interface of a module that translated the parameters into an 
internal form for subsequent execution. In the Layers pattern, this responsibility exists in the 
next higher layer.   
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• Abstract Common Services.  Typically the responsibilities of a layer are grouped together 
into services. For example, a layer that has the processor-dependent responsibility may group 
responsibilities that deal with memory management together to provide a memory manage-
ment service. Sometimes, a service is replicated in multiple modules. Abstract Common Ser-
vices would place a single copy of the service in a distinct module and have it accessed by 
the consumers of the replicated service.  In the Layers pattern, the common services are ab-
stracted and located in a layer below the consumers of the services. 

• Use Encapsulation.  There are two design considerations of the Layers pattern with respect 
to interfaces: (1) each layer may have its own interface and (2) particular layers may act as 
an interface (e.g., API, façade) for another layer.  The first consideration is an instance of the 
Use Encapsulation tactic; the second is an instance of the Use an Intermediary tactic.  The 
Use Encapsulation tactic divides a layer’s responsibilities into two categories: public and 
private. The public responsibilities are made visible to the outside through an interface.  
Changing public responsibilities will change the interface through which they are accessed 
and therefore require adaptations in any layers that use that interface. Changes to the private 
responsibilities have no effect on other layers.   

• Restrict Communication Paths.  Layers define an ordering and only allow a layer to use 
the services of its adjacent lower layer.  The possible communication paths are reduced to 
the number of layers minus one.  This limitation has a great influence on the dependencies 
between the layers and makes it much easier to limit the side effects of replacing a layer. 

• Use an Intermediary.  Particular layers may act as an interface (e.g., API, façade) for an-
other layer.  The layer above contains the public responsibilities that need to be visible to 
higher layers and acts as the interface to the layer below in which the private responsibilities 
are hidden.  Changing public responsibilities will change the interface through which they 
are accessed and therefore require adaptations in any layers that use that interface. Changes 
to the private responsibilities have no effect on other layers.   
 

8.4 VARIANTS 

Relaxed layered system. A relaxed layered system is one in which layer N can invoke any layer 
below it rather than exclusively layer N-1, which is achieved by removing the Restrict Communi-
cation Paths tactic (i.e., removing an intermediary). The intermediary transformation in Figure 7 
implements a tactic. The reverse transformation must be used to remove the tactic. Removal of 
this tactic increases the coupling between layer N and layers N-2 and below. 

Layering through inheritance. This variant refers to how the layers are packaged and, conse-
quently, the binding time between them. If lower layers are implemented as base classes, higher 
layers would inherit the lower layers and could subsequently modify them as desired, resulting in 
the code-based binding time of the layers and increased coupling between them. The encapsula-
tion of the lower layers will be broken, because those layers become extensions of the code being 
inherited. The Use Encapsulation tactic of the lower layers is removed. Again, the reversal of the 
transformation we presented in Figure 5 and Figure 6 can be used to create this variant.  
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9 Pipes and Filters Pattern 

The Pipes and Filters architectural pattern provides a structure for systems that process a stream 
of data.  Each processing step is encapsulated in a filter component.  Data is passed through 
pipes between adjacent filters.  Recombining filters allows you to build families of related sys-
tems. 

9.1 PROBLEM 

Imagine you are building a system that must process or transform a stream of input data.  Imple-
menting such a system as a single component may not be feasible for several reasons: the system 
has to be built by several developers, the global system task decomposes naturally into several 
processing stages, and the requirements are likely to change. 

The following forces influence the solution: 

• Future system enhancements should be possible by exchanging processing steps or by re-
combining steps, even by users. 

• Small processing steps are easier to reuse in different context than large components. 

• Non-adjacent processing steps do not share information. 

• Different sources of input data exist, such as a network connection or a hardware sensor 
providing temperature readings. 

• It should be possible to present or store final results in various ways. 

• Explicit storage of intermediate results for further processing in files clutters directories and 
is error-prone, if done by users. 

• You may not want to rule out multi-processing the steps, for example running them in paral-
lel or quasi-parallel. 

9.2 SOLUTION 

The Pipes and Filters architectural pattern divides the task of a system into several sequential 
processing steps.  Each processing step is implemented by a filter.  The input to the system is pro-
vided by a data source.  The output flows into a data sink.  The data sources, filters, and the data 
sink are connected sequentially by pipes.  Each pipe implements the data flow between adjacent 
processing steps. 
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Figure 9: Pipes-and-Filters Pattern Structure 

9.3 THE PATTERN UNDERSTOOD IN TERMS OF TACTICS 

The Pipes-and-Filters pattern implements the following tactics: 

• Maintain Semantic Coherence.  Filters are defined as the processing steps.  A filter’s re-
sponsibilities work together to enrich, refine, or transform its input data.  Semantic coherence 
groups the responsibilities that are allocated to a filter by how they manipulate data or infor-
mation.  The responsibilities work together to enrich data by computing and adding informa-
tion, to refine data by concentrating or extracting information, and to transform data by deliv-
ering data in some other representation.  These responsibilities operate independently and do 
not depend on other processing steps.  

• Use Encapsulation.  Filters hide information about the processing and conform to an inter-
face for processing data.  Some systems use the same data interface for all filters; others de-
fine specialized interfaces.  The filters that public responsibilities make visible to the outside 
include getting input data and supplying output data.  The private responsibilities that are hid-
den are those involved with performing a function on the input data. 

• Restrict Communication Paths.  The sequence of filters combined with pipes is called a 
processing pipeline.  The pattern restricts communication paths with constraints that limit fil-
ters to be single input and single output.  Variants relax this tactic by allowing filters to have 
more than one input and/or more than one output with constraints on the topology (e.g., di-
rected acyclic graphs, tee-and-join pipeline systems).  This limitation influences the number 
of dependencies between filters and, hence, the number of responsibilities to which a modifi-
cation could propagate. 

• Use an Intermediary.  Pipes break some, but not all, dependencies between adjacent filters 
by providing buffering and synchronization.  However, they do not break dependencies on the 
syntax of data.  An intermediary could protect filters from changes in data syntax. 

• Use Start-Up Time Binding. The binding between pipes and filters may be created when the 
filters are invoked. UNIX uses start-up time binding in its use of pipes and filters. 

9.4 VARIANTS 
Tee and Join Pipeline Systems. Tee is the copying of an input stream to create two pipes with 
the same content. This process results in the removal the Restrict Communication Paths tactic, 
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because it creates a new communication path. The reverse transformation from Figure 8 can be 
used to remove the tactic. Join is the merger of two input streams into a single filter. Join is also a 
removal of the Restrict Communication Paths tactic, because it adds a new communication path to 
the filter managing the join. 
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10 Blackboard Pattern 

The Blackboard architectural pattern is useful for problems for which no deterministic solution 
strategies are known.  In Blackboard several specialized subsystems assemble their knowledge to 
build a possibly partial or approximate solution. 

10.1 PROBLEM 

The Blackboard pattern tackles problems that do not have a feasible deterministic solution for the 
transformation of raw data into high-level data structures. 

The following forces influence the solution: 

• A complete search of the solution space is not feasible in a reasonable time. 

• Since the domain is immature, you may need to experiment with different algorithms for the 
same subtasks.  For this reason, individual models should be easily exchangeable. 

• There are different algorithms that solve partial problems. 

• Input, as well as intermediate and final result, have different representations, and the algo-
rithms are implemented according to different paradigms. 

• An algorithm usually works on the results of other algorithms. 

• Uncertain data and approximate solutions are involved. 

• Employing disjoint algorithms induces potential parallelism.  If possible you should avoid a 
strictly sequential solution. 

10.2 SOLUTION 

The idea behind the Blackboard architecture is a collection of independent programs (knowledge 
sources) that work cooperatively on a common data structure.  A central control component 
evaluates the current state of processing and coordinates the specialized programs. 
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Repository 

 

Figure 10: Blackboard Pattern Structure 

10.3 THE PATTERN UNDERSTOOD IN TERMS OF TACTICS 

The Blackboard pattern implements the following tactics: 

• Maintain Semantic Coherence.  Knowledge sources are organized by semantic coherence.  
They are separate, independent subsystems that solve aspects of the overall problem. Seman-
tic coherence groups responsibilities within a knowledge source according to the specialized 
part of the problem they have knowledge to solve. 

• Use an Intermediary and Restrict Communication Paths.  Knowledge sources do not 
communicate with each other directly.  Rather, they use an intermediary in the form of the 
blackboard.  The pattern doesn’t say anything about the binding time, though the structure of 
the patterns lends itself to use with other patterns to defer the binding time of the knowledge 
sources. 

• Use Runtime Registration. Typically, knowledge sources and sinks register for particular 
data items at runtime. The control structure is such that knowledge sources are triggered by 
changes in data items. 

10.4 VARIANTS 

Production system. In this variant, the knowledge sources are represented as a set of rules in a 
higher order language. This representation is the result of applying the Raise the Abstraction 
Level, Use Runtime Binding, and Abstract Common Services tactics. Each knowledge source is 
expressed as statements in the higher level language. Raising the level of abstraction of each 
knowledge source so that the source contains an interpreter of the higher level language and then 
abstracting this interpreter as a common service yields the infrastructure for the production system 
language. Binding the language statements to the interpreter at runtime yields a production sys-
tem. 

Knowledge  
source 

Knowledge  
source 

           Reads/writes 
          Component  
            Controls execution 

Control 

Key: 
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Repository. A repository is a blackboard that acts only on data and does not manage the control 
aspects of data, thereby removing one aspect of the intermediary.  
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11 Broker Pattern 

The Broker architectural pattern can be used to structure distributed software systems with de-
coupled components that interact by remote service invocations.  A broker component is respon-
sible for coordinatng communication, such as forwarding requests, as well as for transmitting 
results and exceptions. 

11.1 PROBLEM 

Building a complex software system as a set of decoupled and interoperating components, rather 
than as a monolithic application, results in greater flexibility, maintainability, and changeability.  
By partitioning functionality into independent components the system becomes potentially distri-
butable and scalable. 

The following forces influence the solution: 

• Components should be able to access services provided by others through remote, location-
transparent service invocations. 

• You need to exchange, add, or remove components at run-time. 

• The architecture should hide system- and implementation-specific details from the users of 
components and services. 

11.2 SOLUTION 

Introduce a broker component to achieve better decoupling of clients and servers.  Servers regis-
ter themselves with the broker, and make their services available to clients through method inter-
faces.  Clients access the functionality of servers by sending requests via the broker.  A broker’s 
tasks include locating the appropriate server, forwarding the request to the server, and transmit-
ting results and exceptions back to the client. 
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Figure 11: Broker Pattern Structure 

The Broker architectural pattern comprises six types of participating components: clients, serv-
ers, brokers, bridges, client-side proxies, and server-side proxies. 

11.3 THE PATTERN UNDERSTOOD IN TERMS OF TACTICS 

The Broker pattern implements the following tactics: 

• Maintain Semantic Coherence.  The description of the Broker pattern states that servers 
group “semantically-related functionality.” 

• Use Encapsulation.  Servers expose their public responsibilities to provide services to clients 
through interfaces and hide their private responsibilities that represent implementation details.  
Brokers are responsible for transmitting requests from clients to servers and for transmitting 
responses back to the client.  The brokers expose their public responsibilities through APIs to 
clients and servers that include operations for registering servers and invoking server meth-
ods.  These interfaces hide system- and implementation-specific details and allow clients to 
access services provided by others through remote, location-transparent service invocations. 

• Use an Intermediary.  The Broker pattern acts as an intermediary between clients and serv-
ers to provide location-transparent service invocations.  Client-side proxies represent an in-
termediary between clients and the broker, so remote objects appear to the client as local.  
The proxy hides implementation details from the client, such as the interprocess communica-
tion mechanism used for message transfers between clients and brokers; the creation and de-
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letion of memory blocks; and the marshaling of parameters and results.  Server-side proxies 
represent an intermediary between servers and the broker.  The proxy is responsible for re-
ceiving requests, unpacking incoming messages, unmarshalling the parameters, and calling 
the appropriate service. 

• Restrict Communication Paths. The clients communicate with the proxy rather than directly 
with the servers. This restriction allows for changes in the servers for the purposes of reliabil-
ity or load balancing. 

• Use Runtime Registration.  Servers register themselves with the broker at runtime. 

11.4 VARIANTS 

Direct communication. In this variant, clients communicate with servers directly and bypass the 
broker. Brokers serve two functions: (1) making the connection between the client and the server 
and (2) managing the communication between them. In this variant, the communication manage-
ment function is removed. This variant is a removal of one application of the Use an Intermediary 
tactic. 

Message-passing broker system. In this variant, servers depend on the type of message to de-
termine their action rather than offering specific services. This variant is an application of the 
Raise the Abstraction Level tactic, since the servers interpret the incoming message to determine 
their action. 

Trader system. In this variant, requests are made for services rather than servers. The broker is 
responsible for locating a server to respond to the service request. This variant is an application of 
the Raise the Abstraction Level tactic to the broker. Rather than having the server’s identity hard-
wired, the broker must interpret the service request and determine the correct server. 

Adapter broker system. This variant adds a layer to the broker on the server side that registers 
servers and interacts with them. By having multiple adapters, different strategies for assigning 
servers can be used. This application of the Use an Intermediary tactic interposes the adapter be-
tween the server and the broker, which also restricts communication paths. Also an application of 
the Abstract Common Services tactic, this variant puts all server communication and registration 
services in one location. 

Callback broker system. In this variant, there is no distinction between the client and server. 
Each server registers to receive events of a particular type, and the broker calls the appropriate 
server when events arrive. In this sense, it is similar to the message-passing variant. This variant is 
an application of the Raise the Abstraction Level tactic to the broker, since it now must distin-
guish between different types of events rather than reacting to the identity of the server in a re-
quest.  
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12 Model-View-Controller Pattern 

The Model-View-Controller architectural pattern (MVC) divides an interactive application into 
three components.  The model contains the core functionality and data.  Views display informa-
tion to the user.  Controllers handle user input.  Views and controllers together comprise the user 
interface.  A change-propagation mechanism ensures consistency between the user interface and 
the model. 

12.1 PROBLEM 

User interfaces are especially prone to change requests.  Building a system with the required 
flexibility is expensive and error prone if the user interface is tightly interwoven with the func-
tional core. 

The following forces influence the solution: 

• The same information is presented differently in different windows. 

• The display and behavior of the application must reflect data manipulations immediately. 

• Changes to the user interface should be easy, and even possible at runtime. 

• Supporting different ‘look and feel’ standards or porting the user interface should not affect 
code in the core of the application. 

12.2 SOLUTION 

MVC divides an interactive application into the three areas: processing, output, and input.  The 
model component encapsulates core data and functionality.  View components display informa-
tion to the user.  Each view has an associated controller component.  Controllers receive input. 
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Figure 12: Model-View-Controller Pattern Structure 

12.3 THE PATTERN UNDERSTOOD IN TERMS OF TACTICS 

The Model-View-Controller pattern implements the following tactics: 

• Maintain Semantic Coherence.  According to the definition, the model component contains 
the functional core of the application, requiring all the necessary responsibilities for those 
concepts to be located within the model. 

• Use Encapsulation. The model component encapsulates the functional core data and func-
tionality. 

• Use an Intermediary.  The controller acts as an intermediary between the input device and 
the model. The view acts as an intermediary between the model and the output device. 

• Use Runtime Binding. Views can be opened and closed dynamically, and different views 
can be bound to the data at different times during execution. 

12.4 VARIANTS 

Document view. In this variant, the view and the controller are merged. This merger is the appli-
cation of the Maintain Semantic Coherence tactic, because it allows all window events to be man-
aged in a consistent fashion. This merger is also the removal of the Use an Intermediary tactic, 
because the controller no longer acts as an intermediary between the view and the model. 
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13 Presentation-Abstraction-Control Pattern 

The Presentation-Abstraction-Control architectural pattern (PAC) defines a structure for interac-
tive software systems in the form of a hierarchy of cooperating agents.  Every agent is responsible 
for a specific aspect of the application’s functionality and consists of three components: presenta-
tion, abstraction, and control.  This subdivision separates the human-computer interaction as-
pects of the agent from its functional core and its communication with other agents. 

13.1 PROBLEM 

The following forces influence the solution: 

• Agents often maintain their own state and data. 

• Interactive agents provide their own user interface. 

• Systems evolve over time. 

13.2 SOLUTION 

Structure the interactive application as a tree-like hierarchy of PAC agents.  Every agent is re-
sponsible for a specific aspect of the application’s functionality, and consists of three compo-
nents: presentation, abstraction, and control.  The presentation provides the visible behavior.  
The abstraction maintains the data model that underlies the agent, and provides functions that 
operate on this data.  Its control connects the present and abstraction components and provides 
functionality that allows the agent to communicate with other PAC agents. 

Key: 
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               coordinates activities with 

             Component with presentation,  
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Figure 13: Presentation-Abstraction-Control Pattern Structure 
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13.3 THE PATTERN UNDERSTOOD IN TERMS OF TACTICS 

The Presentation-Abstraction-Control pattern implements the following tactics: 

• Maintain Semantic Coherence.  According to the definition, a PAC agent implements an 
important concept in the system. Implementing a concept within an agent requires locating re-
sponsibilities for those concepts within the components of an agent. 

• Raise the Abstraction Level.  Data that flows down the hierarchy is specialized at each 
agent. Thus, much like layers, each agent acts as an interface to specialize information before 
passing it on to the agents below it.  

• Use Encapsulation.  Information and behavior that define the concept are made visible. How 
an agent computes that concept is kept hidden. 

• Use an Intermediary. PAC is a hierarchy of agents. Each parent acts as an intermediary be-
tween its parent and its children. Using this hierarchy allows the modification of the children 
without affecting the upper levels of the hierarchy. 

13.4 VARIANTS 

PAC agents as active objects. In this variant, each PAC agent is active and lives in its own 
thread of control. An agent’s thread model is not the result of the application (or removal) of a 
modifiability tactic. Threads of control are not a concept in the modifiability model. 

PAC agents as processes. In this variant, each PAC agent may be located in a different process 
or on remote machines. Proxies are used to manage the communication. The use of a proxy is an 
application of the Use an Intermediary tactic. 
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14 Microkernel Pattern 

The Microkernel architectural pattern applies to a software system that must be able to adapt to 
changing system requirements.  It separates a minimal functional core from extended functional-
ity and customer-specific parts.  The microkernel also serves as a socket for plugging in these 
extensions and coordinating their collaboration. 

14.1 PROBLEM 

The following forces influence the solution: 

• The application platform must cope with continuous hardware and software evolution. 

• The application platform should be portable, extensible, and adaptable to allow easy integra-
tion or emerging technologies. 

14.2 SOLUTION 

The microkernel patterns defined five kinds of participating components: internal servers, exter-
nal servers, adaptors, clients, and microkernel. 
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Figure 14: Microkernel Pattern Structure 

14.3 THE PATTERN UNDERSTOOD IN TERMS OF TACTICS 

The Microkernel pattern implements the following tactics: 

• Maintain Semantic Coherence.  The microkernel implements central services for resource 
handling.  Internal and external servers extend the functionality provided by the microkernel. 
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• Abstract Common Services.  The microkernel implements atomic services or mechanisms 
that serve as a fundamental base on which more complex functionality is constructed. These 
services are abstracted from any consumer of the services. 

• Use Encapsulation.  System-specific dependencies are encapsulated within the microkernel.   

• Restrict Communication Paths. Internal servers are only accessible by the microkernel 
component.  The microkernel can only be accessed by external servers and adaptors.  Clients 
can only access the system by way of adaptors. 

• Use an Intermediary.  Adaptors (also known as emulators) serve as interfaces between cli-
ents and their external servers to protect clients from direct dependencies. 

14.4 VARIANTS 

Microkernel system with indirect client-server connections. In this variant, all communication 
paths are established through the microkernel. The communication itself is done directly. This 
direct communication is an application of the Abstract Common Services tactic that establishes 
communication in one location and of the Restrict Communication Paths tactic that requires cer-
tain communications to go through the microkernel. 

Distributed microkernel system. In this variant, the microkernel is distributed but appears uni-
form to the client. The client does not need to know on which machine a particular service is lo-
cated. This distribution is an application of the Use an Intermediary tactic that disguises the loca-
tion of the actual service. 
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15 Reflection Pattern 

The Reflection architectural pattern provides a mechanism for changing the structure and behav-
ior of a software system dynamically.  It supports the modification of fundamental aspects, such 
as type structures and function call mechanisms.  In this pattern, an application is split into two 
parts.  A meta level provides information about selected system properties and makes the software 
self-aware.  A base level includes the application logic.  Its implementation builds on the meta 
level.  Changes to information kept in the meta level affect subsequent base-level behavior. 

15.1 PROBLEM 

The following forces influence the solution: 

• Changing software is tedious, error prone, and often expensive. 

• Adaptable software systems usually have a complex inner structure. 

• The more techniques that are necessary for keeping a system changeable, the more awkward 
and complex its modification becomes. 

• Changes can be of any scale. 

• Even fundamental aspects of the software system can change. 

15.2 SOLUTION 

Make the software self-aware and make selected aspects of its structure and behavior accessible 
for adaptation and change.  This leads to a structure of two parts, a meta level and a base level.  
The meta level consists of meta-objects that represent information about the software.  The base 
level defines the application logic.  Its implementation uses the meta-objects to remain independ-
ent of those aspects that are likely to change. 
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Figure 15: Reflection Pattern Structure 

15.3 THE PATTERN UNDERSTOOD IN TERMS OF TACTICS 

The Reflection pattern implements the following tactics: 

• Maintain Semantic Coherence.  Meta-objects represent aspects of the software that are 
likely to change, and they control that change.  The base level defines the application logic 
and uses the meta-objects to remain independent of those aspects that are likely to change. 

• Use Encapsulation.  An interface is specified for manipulating the meta-objects. 

15.4 VARIANTS 

Reflection with several meta levels. In this variant, several meta levels may depend on each 
other. This variant is another application of the Maintain Semantic Coherence tactic, in which the 
tactic is applied to the meta-objects themselves. 
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16 Conclusions 

The general problem of improving an architecture’s capabilities and properties is one that practi-
tioners face daily. What we have presented here is a first approach to a principled basis for per-
forming transformations to improve the modifiability characteristics of an architecture. 

Beginning with two classes of models of modifiability—one based on coupling and cohesion and 
one based on cost models—we derived a collection of architectural tactics to improve modifiabil-
ity. Each tactic represents a transformation of the architecture. 

Because of the importance of architectural patterns in the design process, we also presented an 
explanation of architectural patterns that relate to modifiability and the patterns’ variants in terms 
of the architectural tactics. These tactics allow the transformation of architectures based on pat-
terns or the transformation of existing architectures into ones that embody the use of particular 
patterns. The designer has two options for using modifiability tactics: 

1. to understand patterns and how they support modifiability 

2. to adjust patterns in order to improve their properties with respect to modifiability 

In either case, the designer can use architectural tactics as a basis for making principled design 
decisions. 

Modifiability is one quality that is important for architectures, but it is not the only one. We an-
ticipate providing similar analyses for other important quality attributes. 
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